快捷导航

【盘点2020】Nature、Science 分别公布生命科学领域十大发现和突破2024/1/23

[复制链接]
查看: 3|回复: 0
发表于 2024-1-23 09:27:26 | 显示全部楼层 |阅读模式
真的挺后悔自己高中没好好学习,自己曾是湖北八校之一的学生,毕业之后看着自己的同学不是985就是211,也许当时可能觉得没啥差距,但是真就一本管学习,二本管纪律,三本管卫生,985大学的教学模式和方法以及教育资源,真的不是二本,三本可以比的,希望大家都可以好好学习,我个大学生看个这个,快感动死了。

  原标题:【盘点2020】Nature、Science 分别公布生命科学领域十大发现和突破elnhttps://www.neotrident.com/创腾科技专注于生命科学和材料科学信息化解决方案20余年,已助力国内千余家研发机构/企业提效降本、提升合规水平。我们为用户提供ELN电子实验记录本在内的实验过程管理、研发数据挖掘与深度利用、分子模拟与人工智能AI建模的一站式、多场景数字化智能化解决方案。


  回顾2020年,《Science》 和 《Nature》 杂志盘点了今年发表的科学新闻和研究观点,各从中选出了十项最为重大的科学发现。

  生命科学领域占半数(包括了新冠疫苗的研发,艾滋病毒,ISPR治疗遗传性疾病,以及结构生物学)、另外也包括了天文,全球变暖、冷冻电镜突破,室温超导体等,这些突破性成果使人类距离真相更近了一步,有望给未来的研究带来启发。

  《Science》

  2020年生命科学领域突破

  当地时间12月17日,美国《Science》杂志公布了其评选出的2020年十大科学突破,其中,新冠疫苗的研发居于榜首。其他2项生命科学领域的研究囊括艾滋病以及CRISPR治疗遗传性疾病。

  《Science》杂志在文章中表示,尽管2020年全球多国饱受新冠肺炎疫情重创,但科学家们仍竭尽所能开展研究,而这些研究成果,正是疫情中绽放出的希望之光,将指引着他们未来做出更大贡献。

  无与伦比的一年 图源science

  新冠疫苗点亮希望之光

  图片说明:疫苗为人类带来希望之光

  2019年末发现的新型冠状病毒以惊人的速度席卷全球。当全世界陷入恐慌之时,1月12日,中国科学家向世界公布了新冠病毒的基因组,为全世界科学家寻找应对和治愈新冠肺炎疫情奠定了基础,研制新冠疫苗的工作也拉开了序幕!此后,多名科学家纷纷投身于新冠肺炎疫苗的研制工作!

  截至12月10日,全球有162种候选疫苗正处于研发阶段,其中52种候选疫苗已经进行临床试验,有些疫苗已经公布了三期临床试验的结果。此外,今年与新冠病毒相关的研究论文激增。截至12月中旬,在同行评审期刊上发表的论文超过20万篇,而在非同行评审期刊上发表的文章更多。

  经科学家们的努力,中国新冠病毒疫苗于2020年12月31日获批上市,已有数据显示,保护率为79.34%,实现安全性、有效性、可及性、可负担性的统一,达到世界卫生组织及国家药监局相关标准要求。在这场新冠肺炎疫情大考中,中国新冠病毒疫苗研发交出了一份优秀的答卷。

  CRISPR首次成功治愈两种遗传性血液病

  图片说明:CRISPR技术打败了镰状血细胞

  2012年,颠覆性的基因编辑工具CRISPR横空出世,它赋予研究人员编辑农作物和动物的强大力量,为科学研究和生物医学领域带来新一轮革命,成为《Science》杂志2015年十大科学突破之一,并摘得今年诺贝尔化学奖的桂冠。

  今年,这一“基因魔剪”再次向世界展示了其“魔力”:首次成功治愈β地中海贫血和镰刀型细胞贫血症这两种遗传性血液病。

  为治疗三名镰状细胞病患者,研究人员从每名病人身上采集了不成熟的血细胞—血干细胞,然后用CRISPR靶向沉默一个“关闭”开关—这个开关在成人体内会停止胎儿形态血红蛋白的产生,而这种血红蛋白可对抗镰状突变的影响。在病人接受化疗清除病血干细胞后,经过CRISPR处理过的细胞被重新注入患者体内。

  开展试验的两家公司12月报告称,这些患者17个月前接受治疗,现在正产生大量胎儿血红蛋白。此外,这些公司为7名正常输血治疗β地中海贫血的患者提供这种治疗后,这些病患就不需要输血了。

  研究人员指出,这种新疗法可与向干细胞中添加血红蛋白DNA治疗这两种疾病的基因疗法相媲美。

  AI首次精准预测蛋白质三维结构

  图片说明:人工智能首次精准预测蛋白质三维结构

  50年来,科学家们一直致力于解决生物学领域最大的挑战之一:预测一系列氨基酸在“变身”为工作蛋白质时会折叠成何种精确三维形状。今年,他们实现了这个目标。

  12月1日,谷歌旗下的“Deepmind”公司宣布,其新一代AlphaFold人工智能系统在国际蛋白质结构预测竞赛(CASP)上击败了其余参会选手,精确预测了蛋白质的三维结构,准确性可与冷冻电子显微镜(cryo-EM)、X 射线晶体学等实验技术相媲美。研究人员指出,鉴于蛋白质的精确形状决定了它的生化功能,这一新进展可以帮助研究人员发现疾病的发病原理,开发新药,甚至创造出耐旱植物和更便宜的生物燃料。

  “精英控制员”控制艾滋病病毒

  图片说明:HIV将自己寄生在宿主的DNA内

  与所有逆转录病毒一样,艾滋病病毒(HIV)会将其遗传物质整合到人类染色体内,在那里创造出“储存库”,免疫系统无法检测到,抗逆转录病毒药物也无能为力。

  尽管如此,HIV藏身于何处会产生不一样的结果。今年,一项针对64名HIV精英控制者进行的研究表明,在没有使用抗逆转录病毒药物的情况下,他们体内的病毒载量仍然非常低,这揭示了病毒在整合到基因组中位置的重要性。

  研究人员称,虽然对这些“精英控制者”的新认知不会直接导致治愈艾滋病,但它开启了一种新策略,可以让其他感染者在没有治疗的情况下活几十年。

  《Nature》

  2020年生命科学领域突破

  激活并杀死潜伏的HIV病毒

  导致艾滋病的HIV病毒可以长期“潜伏”在宿主细胞中,几乎不进行转录,因此不会被免疫系统发现。在《自然》杂志1月同期发表的两项研究中,报道了被称为“激活并杀死”(Shock and kill)的治疗策略,旨在扭转这种潜伏期,通过增加病毒基因的表达(激活),使被感染细胞更容易被免疫系统消灭(杀死)。

  两组研究人员都描述了在动物模型中的干预措施,这可能是迄今为止报道的最有效的激活手段,而且是可重复的。Nixon及其同事使用了一种名为AZD5582的药物,用于激活转录因子NF-κB——HIV-1基因表达的主要刺激因子。

  McBrien等人则将两种免疫干预措施结合起来,先通过抗体疗法耗竭CD8+ T细胞(降低病毒转录水平的免疫细胞),再进行N-803药物治疗,该药物可激活HIV-1的转录。除了这些进展,这两项研究还展示了用药物逆转病毒潜伏相关的概念和技术挑战。

  基因编辑破解挑食之谜

  一种学名为Drosophila sechellia的果蝇只以有毒的诺丽果柑(Morinda citrifolia)为食。与其他喜欢各种水果的果蝇相比,是什么让这个物种如此挑食?

  Auer等人利用基因组编辑工具CRISPR-Cas9破解了这个谜题。他们发现,相比其他果蝇,D。sechellia体内表达气味受体22a蛋白(Or22a)的感觉神经元格外丰富,而Or22a氨基酸序列的微小变化正是果蝇D。sechellia偏爱诺丽果的关键原因。他们还发现了其他几种可能导致这种简单行为转变的演化改变。即使是喜欢臭水果的小小果蝇,也能有力地揭示大脑如何演化出复杂的行为。

  冷冻电镜达到原子分辨率

  Yip等人和Nakane等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置结构生物学的一个基本原理是,一旦研究人员能够以足够的分辨率直接观察到大分子,就有可能理解其三维结构与生物功能之间的联系。

  在今年10月《自然》杂志同期发表的两项研究中,Yip等人和Nakane等人报道了迄今为止使用单粒子冷冻电子显微镜(cryo-EM)的方法获得的最清晰图像,首次确定了蛋白质中单个原子的位置。两个小组使用的硬件都经过改良,突破了以往cryo-EM成像在分辨率上的限制。

  随着这些技术的发展,cryo-EM图像信噪比的提高将扩展冷冻电镜技术的适用性。也许这些技术的融合将使cryo-EM的结构测定达到甚至超越1埃(0.1纳米)的分辨率——这在过去几乎是不可能实现的成就。

  干扰素缺乏可导致新冠重症

  在9月在线发表于《科学》的两篇论文中,Zhang等人和Bastard等人阐明了影响感染新冠病毒后是否发展为重症的一个关键因素——干扰素尤其是I型干扰素(IFN-I)的缺乏。

  这种缺乏可能由不同原因导致,比如编码关键抗病毒信号分子的基因发生遗传突变,或由于抗体与I型干扰素结合并使其“中和”。I型干扰素缺乏如何导致危及生命的重症COVID-19?

  最直接的解释是这种缺乏导致病毒不受控制地复制和传播。另一方面,I型干扰素缺乏也可能对免疫系统功能有其他影响。IFN-I诱导通路基因突变的个体将从提供干扰素的治疗中受益。此外,那些对IFN-α和IFN-ω具有中和性抗体的人也可能受益于治疗中提供的其他类型的干扰素,如IFN-β和IFN-λ。

  压力为何会使头发变白?

  这是《自然》杂志“新闻与观点”栏目在2020年读者浏览最多的一项研究报道。目前对压力对头发变白的相对作用尚不完全清楚。头发的颜色由黑素细胞决定,这些细胞来自于毛囊凸起部分的黑色素干细胞(MeSCs)。

  这篇发表于1月《自然》杂志的论文是哈佛大学许雅捷团队的成果,第一作者是张兵博士。研究报告称,在压力引起的“战斗或逃跑”反应中,交感神经系统的神经元会释放出神经递质分子去甲肾上腺素;在极端应激或高水平去甲肾上腺素暴露下,黑色素干细胞的增殖分化显著增加,导致黑色素细胞大量迁移,远离毛囊隆突区,但由于没有替代的干细胞,便导致头发变白。

  这项研究将有助于了解压力如何影响其他的干细胞,也为寻找阻止和逆转压力的方法提供了线索。返回搜狐,查看更多

  责任编辑:
作为一个24岁还在读大三的老阿姨,给大家一个忠告,一定一定要努力学习,考上好大学。你只有真正经历过了,才知道没有学历,你甚至连一个机会都得不到。我现在专升本上了大学,在我专科实习的时候,我有一个同学特别优秀,基础很扎实,带他的老师也很喜欢他,但就因为他是专科毕业,最终没能留在那里。而且考研,有很多学校是明确专硕不收专升本学生的(就我的专业来说),只能考学硕。没有一个本科学历真的很难,尤其是在我们都是普通人的情况下。即使你现在很迷茫,但你也必须努力学习,考上好大学,这样后来你希望改变,也比由专科挣扎轻松得多。大家现在都还很年轻,珍惜你们现在无尽的可能性,我已经因为自己的选择,失去了很多机会。以我为鉴,与君共勉。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册账号

本版积分规则

精彩推荐

让学习更简单

  • 反馈建议:麻烦到学习网管理处反馈
  • 我的电话:这个不能给
  • 工作时间:周一到周五

关于我们

云服务支持

精彩文章,快速检索

关注我们

Copyright 学习网  Powered by©  技术支持:飛     ( 闽ICP备2021007264号-3 )